Hardy Spaces, Commutators of Singular Integral Operators Related to Schrödinger Operators and Applications

نویسنده

  • LUONG DANG
چکیده

Let L = −∆+ V be a Schrödinger operator on R, d ≥ 3, where V is a nonnegative function, V 6= 0, and belongs to the reverse Hölder class RHd/2. The purpose of this paper is three-fold. First, we prove a version of the classical theorem of Jones and Journé on weak∗-convergence in H L(R ). Secondly, we give a bilinear decomposition for the product space H L(R )×BMOL(R). Finally, we study the commutators [b, T ] for T belongs to a class KL of sublinear operators containing almost all fundamental operators in harmonic analysis related to L. More precisely, when T ∈ KL, we prove that there exists a bounded subbilinear operator R = RT : H 1 L(R d)×BMO(Rd) → L(R) such that (1) |T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|, where S is a bounded bilinear operator from H L(R ) × BMO(R) into L(R) which does not depend on T . In the particular case of the Riesz transforms Rj = ∂xjL , j = 1, ..., d, and b ∈ BMO(R), we prove that the commutators [b, Rj ] are bounded on H 1 L(R ) iff b ∈ BMO L (R)– a new space of BMO type, which coincides with the space LMO(R) when L = −∆+ 1. Furthermore, ‖b‖BMOlog L ≈ ‖b‖BMO + d ∑ j=1 ‖[b, Rj]‖H1 L →H L . The subbilinear decomposition (1) explains why almost all commutators of the fundamental operators are of weak type (H L, L ), and when a commutator [b, T ] is of strong type (H L, L ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutators of the Hardy-Littlewood Maximal Operator with BMO Symbols on Spaces of Homogeneous Type

Weighted L for p ∈ 1,∞ and weak-type endpoint estimates with general weights are established for commutators of the Hardy-Littlewood maximal operator with BMO symbols on spaces of homogeneous type. As an application, a weighted weak-type endpoint estimate is proved for maximal operators associated with commutators of singular integral operators with BMO symbols on spaces of homogeneous type. Al...

متن کامل

Lipschitz Estimates for Multilinear Commutator of Pseudo-differential Operators

As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [4, 5, 6, 7, 8, 9, 10]). In [4, 5, 6, 7, 8, 9, 10], the authors prove that the commutators and multilinear operators generated by the singular integral operators and BMO functions are bounded on L(R) for 1 < p <∞; Chanillo (see [2]) proves a similar result when singular int...

متن کامل

Lipschitz Estimates for Commutators of Singular Integral Operators on Weighted Herz Spaces

In this paper, we establish the boundedness of commutators generated by weighted Lipschitz functions and Calderón-Zygmund singular integral operators on weighted Herz spaces.

متن کامل

ACTA UNIVERSITATIS APULENSIS No 20/2009 BOUNDEDNESS OF MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL IN MORREY SPACES ON HOMOGENEOUS SPACES

In this paper, we prove the boundedness of the multilinear commutator related to the singular integral operator in Morrey and Morrey-Herz spaces on homogeneous spaces. 2000 Mathematics Subject Classification: 42B20, 42B25. 1. Preliminaries Sawano and Tanka(see [13]) introduced the Morrey spaces on the non-homogeneous spaces and proved the boundedness of Hardy-Littlewood maximal operators, Calde...

متن کامل

Continuity for Multilinear Commutator of Littlewood-paley Operator on Besov Spaces

As the development of the singular integral operators, their commutators have been well studied (see [1, 2, 3, 14]). From [2, 3, 9, 13], we know that the commutators and multilinear operators generated by the singular integral operators and the Lipschitz functions are bounded on the Triebel-Lizorkin and Lebesgue spaces. The purpose of this paper is to introduce the multilinear commutator associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012